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An elastic plate is located on the surface of a tiquid, in continuous contact with it and rigidly clamped in a support along a certain 
straight line. The orthogonal incidence of a small amplitude flexural-gravitational wave on the support is considered. Exact 
expressions are obtained for the wave field in the fluid and the flexural field in the plate. The transmission coefficient of the 
incident flexural-gravitational wave through the support and its reflection coefficient from it are determined. The forces which 
arise in the support are found. The investigation is carried out for liquids of finite and infinite depth. The effect of the depth of 
the liquid on the wave processes is indicated. The liquid is assumed to be inviscid and its friction on the bottom and the lower 
surface of the plate in the neighbourhood of the support is therefore ignored. @ 2002 Elsevier Science Ltd. All rights reserved. 

The problem of the interaction of gravitational waves with a floating plate has been extensively 
investigated as applied to wave processes occurring in a sea covered with ice. For example, flexural- 
gravitational waves in a liquid with a homogeneous ice sheet have been studied in [1], the problem of 
the normal incidence of surface waves on the edge of solid ice has been solved in the case of a tank of 
finite depth [2] and the diffraction of plane waves at one or several cracks in an ice sheet has been 
considered in [3]. The interest which has recently been shown abroad in the study of the hydro-elastic 
behaviour of floating plates is primarily due to the planning and construction of water airfield's in a 
number of foreign states such as the USA and Japan, for example. Hence, problems concerned with 
the normal and oblique incidence of a gravitational wave on the edge of a floating plate have been 
considered [4-8]. It is of interest to investigate the effect which different structural components of water 
airfields and, in particular, the methods used to fix them, have on the wave processes. 

A model of a floating platform with the simplest form of fixing, a rigid end-stop along a certain line, 
is considered. Here, free movement of the liquid particles across the support is assumed to be possible. 
A flexural-gravitational wave, which is incident orthogonally on the straight line along which the plate 
is fixed, is the source of the wave field in the water and the flexural field in the plate. If the plate is 
isolated, the flexural wave is completely reflected from the rigid end-stop. In the case under consideration, 
a plate and the mass of water under it participate in a common motion. The existence of two channels 
for energy transmission leads to the partial transmission of the flexural gravitational wave. This paper 
is concerned with the study of this transmission. 

1. FORMULATION OF THE PROBLEM 

Consider a plate located on the surface of a liquid and fastened in a support. The Oxy plane coincides 
with the lower surface of the plate in its unperturbed state. The z axis is directed vertically upwards. 
The origin of the system of coordinates is located on the straight line of the fixing of the plate. A flexural- 
gravitational wave propagates along the x axis. With this choice of the system of coordinates, the field 
is independent of the y coordinate and, consequently, we can consider a two-dimensional problem. The 
scheme of the model is'shown in Fig. 1. Here, h is the depth to which the plate sinks (is immersed) and 
H is the distance between its lower surface and the bottom. 

We shall confine ourselves to considering harmonic processes. The factor e qt°t (to is the angular 
frequency), which specifies the time-dependence of the processes, is omitted everywhere. 

The liquid is assumed to be ideal and incompressible and the wave process in it is assumed to be 
potential. The required potential in the whole of the volume of the liquid must satisfy the Laplace 
condition 
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The equation for the equilibrium of the plate under the action of inertial forces, internal elastic forces 
and the hydrodynamic pressure P(x, z) on the lower surface of the plate is written as 

D~"(x ) -ph~2~(x ) -  P(x,O) = 0 (1.2) 

where D is the cylindrical stiffness of the plate, ~ is the vertical displacement of the plate, p is the density 
of the liquid and oh is the surface density of the plate, which is defined on the basis of Archimedes 
law. Equation (1.2) holds everywhere with the exception of the line along which the plate is fixed 
(x = 0), in which the conditions for the stiffness of the end-stop 

4(0) = o, ; ' (o)  = o (1.3) 

must be satisfied. 
Consequently, there is a function on the left-hand side of Eq. (1.2), the carrier of which is concentrated 

at the single point x = 0. This function is a linear combination of a 8-function and its derivatives. In 
fact 

D~""(x)- phco2~(x) - P(x,O) = AS(x) + BS'(x) (1.4) 

Here, we shall confine ourselves to the two terms of the linear combination containing the zeroth 
and first derivatives of the 8-function. The higher derivatives correspond to the breakdown of the integrity 
of the plate. The physical meaning of the coefficients A and B will be explained below (Section 5). 

In the case of a wave of small amplitude, the hydrodynamic pressure on the lower surface of the plate 
is given by the formula 

P(x, O) = -pg~(x) + io~pO(x, O) (1.5) 

The normal component of the velocity of the liquid on its surface must be identical to the velocity 
of displacement of the surface of the plate, that is 

~(x ,O)  = - i ~ ( x )  (1.6) 
~z 

Substituting expression (1.5) into the equation for the equilibrium of the plate (1.4) and taking account 
of the linearized kinematic condition (1.6), we obtain the boundary condition on the lower surface of 
the plate 

(o 
Ox 4Oz phc°: "~z oz )1 :0 (1.7) 

In the case of a liquid of finite depth, the bottom will be assumed to be rigid 



Transmission of a flexural-gravitational wave through a rigid end-stop in a floating plate 449 

b~(x,  z) 
- - - - 0 ,  z -- - H  (1.8) 

The condition at infinity, according to which the required field, after subtracting the incident wave, 
must consist of waves departing to infinity and decaying at infinity, completes the formulation of the 
problem. 

2. C O N S T R U C T I O N  OF T H E  S O L U T I O N .  T H E  CASE OF 
A L I Q U I D  OF F I N I T E  D E P T H  

We will seek the velocity potential in the form of the sum 

• (x, z) = ~0 (x, z) + ~g(x, z) (2.1) 

where ~0 is a surface wave which is incident on the support and W is the set of waves scattered by the 
support. Each of the terms on the right-hand side of Eq. (2.1) must satisfy the system of equations (1.1), 
(1.7) and (1.8). 

The expression for the incident wave is determined using the formula 

¢0(x, Z) = Cch[~,0(H + z)]e ik°x (2.2) 

where C is its amplitude and ~,0 is the wave number (~,0 > 0). 
In order to find the scattered wave, we successively apply a direct and an inverse Fourier 

transformation with respect to the x coordinate to system of equations (1.1), (1.7) and (1.8), which are 
written for the function ~. We obtain the following integral representation 

i~ 7 ch[L(H + Z)](A + iBk)e ixx dX 
• (x,z) = - ~~ '_2, t~(X) 

A(~) -- DL 5 sh(kH) - phto2~,sh(M-/) + pg~ sh(kH) - 9(o 2 ch(M'/) 

(2.3) 

The equality of the denominator of the integrand in (2.3) to zero represents the dispersion equation 
which has two real roots (___ ~,0), a denumerable set of imaginary roots and two pairs of complex-conjugate 
roots. The real roots +~-0 and -~,0 correspond to the wave numbers of progressive non-decaying waves. 
The denumerable set of imaginary roots characterizes waves which decay exponentially with distance 
from the support. The two pairs of complex conjugate roots define progressive decaying waves due to 
the flexural stiffness of the plate. 

The integration in (2.3) is carried out along the real axis passing around the positive root of the 
denominator of the integrand (+3,0) from below and the negative root (-~-0) from above (the principle 
of  limiting absorption). 

Using the theorem of residues and taking account of the evenness of the function A(~,), it is possible 
to obtain an expression for ~(x, z) in the form of a sum. As a result, we have the following representation 
of  the wave field in the liquid (everywhere henceforth summation is carried out from n = 0 to n = oo) 

• (x, z) = Cch[k 0 (H + z)]e O'°x - RoY, ch[~'n (z + H)](Ai - B~, n sign x)e  0'" Ixl 
,a'(z.,) (2.4) 

where ~'n (n > 0) are the roots of the function A(~,), which are located in the upper complex half-plane. 
Using the kinematic condition (1.6), we obtain an expression for the flexural field in the plate 

~( x)  = i C,A, ° sh(~,oH)eiXOX + ~, sh(~,nH)( Ai~, n - B~,2n sign x)e  ~x" Ixl 
co A'(X.) (2.5) 

Finally, the unknown coefficients A and B are determined from the conditions for the rigidity of the 
end-stop, which the vertical displacements of the plate ~(x) must satisfy 

A = - A  l, B = i A  2 (2.6) 
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A k =lCkkosh(~ ,oH)[~X~- lsh(~ '"H) .]  -. 
j ' 

k = l , 2  
(2.7) 

3. C O N S T R U C T I O N  OF THE S O L U T I O N .  THE CASE OF 
AN I N F I N I T E L Y  D E E P  L I Q U I D  

The solution is constructed using a technique which is similar to that presented above. Instead of the 
impermeability condition on the bottom (1.8), a condition is used here which requires that, at a great 
depth, the liquid should be in a state of rest: ~(x, z) ---> 0, z ---> --~. Hence, for the incident wave, we 
have 

dPoCx, z) = CerZ°Xe x°z (3.1) 

where Z0 is the positive root of the dispersion equation 

A(~) =- D~. 5 - phto2L + pg~. - pto2 = 0 (3.2) 

The scattered wave is determined from the formula 

_RO T (A - iB~,)e - '~  + (a + iB~.)e 'ax eXZdX ~F(x, z) = 

27t "o A(Tt) 
(3.3) 

As in the previous case, the positive root of the numerator of the integrand is passed from below. 
On satisfying the kinematic condition (1.6), we have an expression for the displacement field in the 

plate 

" • . 1 7 (A - iB~,)e - i~  + (A + iB~,)e 'x~ 
; ( x ) = ~ C k ° e ' X ° x  + ~  X ~  Zztk (3.4) 

The coefficients A and B are determined using formulae (2.6) in which 

Ak /¢i k ** ~,2k-;d'A -1 
k =1,2 (3.5) 

4. T R A N S M I S S I O N  OF THE I N C I D E N T  WAVE 

The amplitude transmission and reflection coefficients of the incident wave, C:r and Cn respectively, 
are calculated using the formulae 

C r = I ito A i - B ~ ,  o ito Ai+B~, 0 (4.1) 
- ° )  , 

For a quantitative estimate of the effect of such factors as the period of the wave and the depth of 
the reservoir on the transmission of the incident wave, a series of numerical experiments was carried 
out for a plate with stiffness D = 3.33 x 101° N m, a liquid (water) with density p = 1025 kg/m 3 and an 
immersion of the plate h = 3 m. 

The dependence of the energy transmission coefficient T of the incident wave and the relative flow 
of energy in the water E = liw/(liw + lip) (1-Iw and lip are the energy flows in the water and in the 
plate) on the period of the incident wave z for different depths of the water reservoir M (M = H + h) 
is shown in Fig. 2. It can be seen that the transmission coefficient becomes larger as the period of the 
wave increases. This can be explained as follows. The mechanical resistance of the plate decreases as 
the period increases. The relative fraction of the energy flow which is carried by the flexural wave in 
the plate decreases. The water begins to play a fundamental role in the transfer of energy, which leads 
to an increase in the transmission coefficient since, according to our assumption, the support does not 
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hinder the motion of the water. The relations T(x) and E(x) are qualitatively identical. However, they 
differ quantitatively. The rigid support which inhibits vertical displacements of the plate, also 
simultaneously prevents the vertical motion of liquid particles which, under the support, are mainly 
displaced in a horizontal direction. This transformation of the motion leads to additional reflection of 
the wave. Hence, the reflection coefficient of the support is much greater than would be expected on 
the basis of a simple comparison of the intensity of the two energy transfer channels. 

The graphs in Fig. 3 illustrate the dependence of the energy transmission coefficient and the relative 
flow of energy in the water on the reservoir depth for different period of the incident wave. The dashed 
lines correspond to the case of infinitely deep water. It can be seen that the transmission coefficient of 
the wave changes non-monotonically as the reservoir depth increases and that a maximum of the 
transmission coefficient is observed at a certain depth. The reservoir depth corresponding to this 
maximum increases as the period becomes longer. The relative flow of energy in the water changes in 
a similar way. As the reservoir depth increases, an enlargement of the "liquid" energy transfer channel 
initially occurs, as a result of which the transmission coefficient increases. At the same time, the effect 
of the bottom is reduced to amplifying the horizontal displacement of the liquid particles for which the 
support is not a barrier. This role of the bottom decreases in the case of reservoirs of great depth and 
the transmission coefficient is somewhat reduced. 

The traditional model [1-8] of an ideal liquid was used in the calculations. Within the framework of 
this model, the friction of the liquid on its fixed boundaries and, in particular, on the reservoir bottom 
are neglected. Friction on the bottom, particularly when account is taken of the irregularities in its relief, 
impedes the horizontal motions of the layer of liquid close to the bottom. Hence, the real values of the 
transmission coefficient of the wave in the case of shallow reservoirs may turn out to be somewhat smaller 
than the calculated values. 

Values of the lengths of waves of different periods for various values of the reservoir depth are given 
in Table 1. 
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Table 1 

M,m "c,s = 3 5 7 9 II 13 15 17 

5 98.3 117.0 131.5 143.6 154.2 163.8 172.6 180.9 
10 120.2 144.1 162.9 179.0 193.5 206.9 219.7 231.9 
20 136.0 165.3 188.8 209.6 2 2 8 . 9  247.4 265.7 284.0 
30 142.4 175.2 202.0 226.3 249.5 272.4 295.5 319.3 
50 146.7 183.3 214.6 2 4 4 . 0  273.4 303.7 335.7 369.6 
90 147.7 186.3 220.8 2 5 5 . 0  291.4 331.8 377.5 428.7 
190 147.7 186.6 221.6 257.1 296.3 342.8 400.5 472.4 
300 147.7 186.6 221.6 257.1 296.4 343.2 4 0 1 . 8  476.9 
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5. I N T E R N A L  F O R C E S  IN T H E  S U P P O R T  

It is well known that the bending moment and the shearing force are characterized by discontinuities 
in the second and third derivatives of the function ~(x) at zero. We use the equation for the equilibrium 
of the plate (1.4) and obtain 
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D ~ ' ( x )  = l ( x )  + A sign x + B 8(x) + C I 

A , 
O ~ " ( x )  = ~ l ( x )dx  + I x l  + - ~ s i g n x  + Cix + C 2 

t(x) = .[ (phco2;(x) + e(x, O))dx 

The  relations for  the discontinuities in the third and second derivatives o f  the funct ion ~(x) at zero 

~"'(x)]  I~=0 = A, D[~"(x ) ]  Ix=0 = B 

follow from the continuity of  the functions ~(x) and P(x,  0) and the property of  the concent ra t ion  o f  
the carrier 8(x) at zero. Hence ,  the coefficientsA and B are the shearing force and the bending m o m e n t  
in the support ,  apar t  f rom the sign. 

Graphs  are shown in Figs 4 and 5 which reflect the effect o f  the per iod o f  the incident wave and the 
reservoir  depth  on the internal forces developed in the support .  Here ,  f and m are the modul i  o f  the 
normal ized internal  forces, that  is, the shearing force and the bending moment .  The  normal ized 
coefficients for the shearing force and the bending m o m e n t  were calculated using the formulae  

Di o~4¢o [ 
c: = co  x3azlx=0. __0 ' c , -  ax2azlx__0.,=0 

Comparison of  these graphs shows a similarity in the nature of  the behaviour of the normalized internal 
forces, the energy transmission coefficient of  the wave and the relative flow of  energy in the water  when  
the per iod o f  the incident wave and the reservoir depth are changed.  

This research was suppor ted  financially by the Russian Compet i t ion  Centre  o f  Basic Natura l  Science 
(97-0-4.1-159, "Boundary -Con tac t  Problems of  Hydrodynamics") .  
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